CHAPTER ONE
BASIC CONCEPTS OF THERMODYNAMICS 1

1-1 Thermodynamics and Energy 2
 Application Areas of Thermodynamics 3
1-2 A Note on Dimensions and Units 3
 Some SI and English Units 5
 Dimensional Homogeneity 7
1-3 Closed and Open Systems 8
1-4 Properties of a System 10
1-5 State and Equilibrium 12
1-6 Processes and Cycles 13
 The Steady-Flow Process 14
1-7 Forms of Energy 14
 Some Physical Insight to Internal Energy 16
 More on Nuclear Energy 18
1-8 Energy and Environment 19
 Ozone and Smog 21
 Acid Rain 21
 The Greenhouse Effect: Global Warming
 and Climate Change 22
1-9 Temperature and the Zeroth Law of
 Thermodynamics 25
 Temperature Scales 25
1-10 Pressure 28
 Variation of Pressure with Depth 30
1-11 The Manometer 33
 Other Pressure Measurement Devices 35
1-12 Barometer and the Atmospheric Pressure 36
1-13 Problem-Solving Technique 38
 A Remark of Significant Digits 40
 Engineering Software Packages 41
 Engineering Equation Solver (EES) 42

Topics of Special Interest: Thermodynamic
Aspects of Biological Systems 43

Food and Exercise 45

Dieting 48

CHAPTER TWO
PROPERTIES OF PURE SUBSTANCES 63

2-1 Pure Substance 64
2-2 Phases of a Pure Substance 64
2-3 Phase-Change Processes of
 Pure Substances 65
 Compressed Liquid and Saturated Liquid 65
 Saturated Vapor and Superheated Vapor 66
 Saturation Temperature and Saturation Pressure 67
 Some Consequences of T_sat and P_sat Dependence 68
2-4 Property Diagrams for
 Phase-Change Processes 70
 1. The T-v Diagram 70
 2. The P-v Diagram 71
 Extending the Diagrams to Include the Solid Phase 73
 3. The P-T Diagram 74
 The P-v-T Surface 76
2-5 Property Tables 77
 Enthalpy—a Combination Property 77
 1a Saturated Liquid and Saturated Vapor States 78
 1b Saturated Liquid—Vapor Mixture 79
 2 Superheated Vapor 83
 3 Compressed Liquid 84
 Reference State and Reference Values 85
2-6 The Ideal-Gas Equation of State 87
 Is Water Vapor an Ideal Gas? 89
2-7 Compressibility Factor—a Measure of
 Deviation from Ideal-Gas Behavior 89
2-8 Other Equations of State 94
 Van der Waals Equation of State 94
 Beattie-Bridgeman Equation of State 95
 Benedict-Webb-Rubin Equation of State 95
 Virial Equation of State 96
2-9 Specific Heats 98

Summary 51
References and Suggested Reading 51
Problems 52
The Carnot Cycle and Its Value in Engineering 454
Air-Standard Assumptions 456
An Overview of Reciprocating Engines 456
Otto Cycle: The Ideal Cycle for Spark-Ignition Engines 457
Diesel Cycle: The Ideal Cycle for Compression-Ignition Engines 463
Stirling and Ericsson Cycles 466
Brayton Cycle: The Ideal Cycle for Gas-Turbine Engines 470
Development of Gas Turbines 473
Deviation of Actual Gas-Turbine Cycles from Idealized Ones 476
The Brayton Cycle with Regeneration 477
The Brayton Cycle with Intercooling, Reheating, and Regeneration 479
Ideal Jet-Propulsion Cycles 483
Modifications to Turbojet Engines 487
Second-Law Analysis of Gas Power Cycles 490
Topics of Special Interest: Saving Fuel and Money by Driving Sensibly 493
Before Driving 494
While Driving 496
After Driving 498
Summary 499
References and Suggested Reading 501
Problems 501
The Carnot Vapor Cycle 514
Rankine Cycle: The Ideal Cycle for Vapor Power Cycles 515
Energy Analysis of the Ideal Rankine Cycle 516
Deviation of Actual Vapor Power Cycles from Idealized Ones 519
How Can We Increase the Efficiency of the Rankine Cycle? 521
1. Lowering the Condenser Pressure (Lowers $T_{\text{low,av}}$) 522
2. Superheating the Steam to High Temperatures (Increases $T_{\text{hig,av}}$) 522
3. Increasing the Boiler Pressure (Increases $T_{\text{hig,av}}$) 523
The Ideal Reheat Rankine Cycle 525
The Ideal Regenerative Rankine Cycle 529
Open Feedwater Heaters 529
Closed Feedwater Heaters 531
Second-Law Analysis of Vapor Power Cycles 537
Cogeneration 539
Combined Gas-Vapor Power Cycles 543
Topics of Special Interest: Binary Vapor Cycles 547
Summary 549
References and Suggested Reading 550
Problems 550
Refrigerators and Heat Pumps 564
The Reversed Carnot Cycle 565
The Ideal Vapor-Compression Refrigeration Cycle 567
Actual Vapor-Compression Refrigeration Cycle 570
Selecting the Right Refrigerant 573
Heat Pump Systems 575
Innovative Vapor-Compression Refrigeration Systems 576
Cascade Refrigeration Systems 577
Multistage Compression Refrigeration Systems 579
Multipurpose Refrigeration Systems with a Single Compressor 582
Liquefaction of Gases 583
Gas Refrigeration Cycles 584
Absorption Refrigeration Systems 588
Topics of Special Interest: Thermoelectric Power Generation and Refrigeration Systems 590
Summary 592
References and Suggested Reading 593
Problems 594
A Little Math—Partial Derivatives and Associated Relations 604
Partial Differentials

11-2 The Maxwell Relations 609
11-3 The Clapeyron Equation 610

General Relations for $du, dh, ds, C_v, and C_p$

11-4 Internal Energy Changes 613
11-5 Enthalpy Changes 614
11-6 Entropy Changes 615

Specific Heats C_v and C_p

11-7 Specific Heats C_v and C_p 616

The Joule-Thomson Coefficient

11-8 The Joule-Thomson Coefficient 620

The $\Delta h, \Delta u, and \Delta s$ of Real Gases

11-9 The $\Delta h, \Delta u, and \Delta s$ of Real Gases 622

Internal Energy Changes

11-10 Internal Energy Changes 623

Enthalpy Changes

11-11 Enthalpy Changes 624

Entropy Changes

11-12 Entropy Changes 625

CHAPTER TWELVE

GAS MIXTURES

12-1 Composition of a Gas Mixture: Mass and Mole Fractions 634
12-2 P-v-T Behavior of Gas Mixtures: Ideal and Real Gases 636

Properties of Gas Mixtures:

12-3 Properties of Gas Mixtures: Ideal and Real Gases 641

Topics of Special Interest: Chemical Potential and the Separation Work of Mixtures

12-4 Topics of Special Interest: Chemical Potential and the Separation Work of Mixtures 648

##ENTHALPY CHANGES OF REAL GASES

12-5 Enthalpy Changes of Real Gases 622

INTERNAL ENERGY CHANGES OF REAL GASES

12-6 Internal Energy Changes of Real Gases 623

ENTROPY CHANGES OF REAL GASES

12-7 Entropy Changes of Real Gases 623

CHAPTER THIRTEEN

GAS-VAPOR MIXTURES AND AIR-CONDITIONING

13-1 Dry and Atmospheric Air 668

THE JULES-THOMSON COEFFICIENT

13-2 Specific and Relative Humidity of Air 669
13-3 Dew-Point Temperature 672
13-4 Adiabatic Saturation and Wet-Bulb Temperatures 673
13-5 The Psychrometric Chart 676
13-6 Human Comfort and Air-Conditioning 678
13-7 Air-Conditioning Processes 680

Enthalpy Changes of Real Gases

14-1 Fuels and Combustion 702
14-2 Theoretical and Actual Combustion Processes 706
14-3 Enthalpy of Formation and Enthalpy of Combustion 711
14-4 First-Law Analysis of Reacting Systems 715

Topics of Special Interest: Fuel Cells

14-5 Adiabatic Flame Temperature 720
14-6 Entropy Change of Reacting Systems 723
14-7 Second-Law Analysis of Reacting Systems 724

Chemical Equilibrium for Simultaneous Reactions

15-1 Criterion for Chemical Equilibrium 744
15-2 The Equilibrium Constant for Ideal-Gas Mixtures 746
15-3 Some Remarks about the K_p of Ideal-Gas Mixtures 749
15-4 Chemical Equilibrium for Simultaneous Reactions 754
CHAPTER SIXTEEN
THERMODYNAMICS OF HIGH-SPEED GAS FLOW 773

16-1 Stagnation Properties 774
16-2 Velocity of Sound and Mach Number 778
16-3 One-Dimensional Isentropic Flow 782
Variation of Fluid Velocity with Flow Area 784
Property Relations for Isentropic Flow of Ideal Gases 786
16-4 Isentropic Flow through Nozzles 788
Converging Nozzles 789
Converging-Diverging Nozzles 793
16-5 Normal Shocks in Nozzle Flow 797
16-6 Flow through Actual Nozzles and Diffusers 803
16-7 Steam Nozzles 810
Summary 813
References and Suggested Reading 815
Problems 815

APPENDIX 1
PROPERTY TABLES AND CHARTS (SI UNITS) 823

Table A-1 Molar Mass, Gas Constant, and Critical-Point Properties 824
Table A-2 Ideal-Gas Specific Heats of Various Common Gases 825
Table A-3 Properties of Common Liquids, Solids, and Foods 828
Table A-4 Saturated Water-Temperature Table 830
Table A-5 Saturated Water-Pressure Table 832
Table A-6 Superheated Water 834
Table A-7 Compressed Liquid Water 838
Table A-8 Saturated Ice Water-Vapor 839

Figure A-9 T-s Diagram for Water 840
Figure A-10 Mollier Diagram for Water 841
Table A-11 Saturated Refrigerant-134a-Temperature Table 842
Table A-12 Saturated Refrigerant-134a-Pressure Table 843
Table A-13 Superheated Refrigerant-134a 844
Figure A-14 P-h Diagram for Refrigerant-134a 846
Table A-15 One-Dimensional Isentropic Compressible-Flow Functions for an Ideal Gas with Constant Specific Heats and Molar Mass, and $k = 1.4$ 847
Table A-16 One-Dimensional Normal-Shock Functions for an Ideal Gas with Constant Specific Heats and Molar Mass, and $k = 1.4$ 848
Table A-17 Ideal-Gas Properties of Air 849
Table A-18 Ideal-Gas Properties of Nitrogen, N_2 851
Table A-19 Ideal-Gas Properties of Oxygen, O_2 853
Table A-20 Ideal-Gas Properties of Carbon Dioxide, CO_2 855
Table A-21 Ideal-Gas Properties of Carbon Monoxide, CO 857
Table A-22 Ideal-Gas Properties of Hydrogen, H_2 859
Table A-23 Ideal-Gas Properties of Water Vapor, H_2O 860
Table A-24 Ideal-Gas Properties of Monatomic Oxygen, O 862
Table A-25 Ideal-Gas Properties of Hydroxyl, OH 862
Table A-26 Enthalpy of Formation, Gibbs Function of Formation, and Absolute Entropy at 25°C, 1 atm 863
Table A-27 Properties of Some Common Fuels and Hydrocarbons 864
Table A-28 Logarithms to Base e of the Equilibrium Constant K_p 865
Table A-29 Properties of the Atmosphere at High Altitude 866
Figure A-30a Nelson-Obert Generalized Compressibility Chart—Low Pressures 867
Figure A-30b Nelson-Obert Generalized Compressibility Chart—Intermediate Pressures 868
Figure A-30c Nelson-Obert Generalized Compressibility Chart—High Pressures 869
Figure A-31 Generalized Enthalpy Departure Chart 870
Figure A-32 Generalized Entropy Departure Chart 871
Figure A-33 Psychrometric Chart at 1 atm Total Pressure 872

APPENDIX 2
PROPERTY TABLES AND CHARTS (ENGLISH UNITS) 873

Table A-1E Molar Mass, Gas Constant, and Critical-Point Properties 874
Table A-2E Ideal-Gas Specific Heats of Various Common Gases 875
Table A-3E Properties of Common Liquids, Solids and Foods 878
Table A-4E Saturated Water—Temperature Table 880
Table A-5E Saturated Water—Pressure Table 881
Table A-6E Superheated Water 883
Table A-7E Compressed Liquid Water 887
Table A-8E Saturated Ice—Water Vapor 888
Figure A-9E T-s Diagram for Water 889
Figure A-10E Mollier Diagram for Water 890
Table A-11E Saturated Refrigerant-134a—Temperature Table 891
Table A-12E Saturated Refrigerant-134a—Pressure Table 892
Table A-13E Superheated Refrigerant-134a 893
Figure A-14E P-h Diagram for Refrigerant-134a 895
Table A-17E Ideal-Gas Properties of Air 896
Table A-18E Ideal-Gas Properties of Nitrogen, N₂ 898
Table A-19E Ideal-Gas Properties of Oxygen, O₂ 900
Table A-20E Ideal-Gas Properties of Carbon Dioxide, CO₂ 902
Table A-21E Ideal-Gas Properties of Carbon Monoxide, CO 904
Table A-22E Ideal-Gas Properties of Hydrogen, H₂ 906
Table A-23E Ideal-Gas Properties of Water Vapor, H₂O 907
Table A-26E Enthalpy of Formation, Gibbs Function of Formation, and Absolute Entropy 909
Table A-27E Properties of Some Common Fuels and Hydrocarbons 910
Table A-29E Properties of the Atmosphere at High Altitude 911
Figure A-33E Psychrometric Chart at 1 atm Total Pressure 912

APPENDIX 3
INTRODUCTION TO EES 913

Index 926