Contents

1 THE MECHANICAL ENGINEERING PROFESSION 1

1.1 OVERVIEW 1
1.2 WHAT IS ENGINEERING? 4
1.3 WHO ARE MECHANICAL ENGINEERS? 7
1.4 CAREER PATHS 26
1.5 TYPICAL PROGRAM OF STUDY 29

SUMMARY 33
SELF-STUDY AND REVIEW 33
PROBLEMS 34
REFERENCES 35

2 PROBLEM-SOLVING SKILLS 36

2.1 OVERVIEW 36
2.2 UNIT SYSTEMS AND CONVERSIONS 37
2.3 DIMENSIONAL CONSISTENCY 46
CONTENTS

2.4 SIGNIFICANT DIGITS 49
2.5 AN ERROR OF UNITS ON THE WAY TO MARS 50
2.6 APPROXIMATION IN ENGINEERING 52
2.7 PROBLEM-SOLVING METHODOLOGY 55

SUMMARY 56

SELF-STUDY AND REVIEW 57

PROBLEMS 57

REFERENCES 60

3 MACHINE COMPONENTS AND TOOLS 61

3.1 OVERVIEW 61
3.2 ROLLING ELEMENT BEARINGS 62
3.3 FLEXIBLE SHAFT COUPLINGS 69
3.4 GEAR TYPES AND TERMINOLOGY 71
3.5 BELT AND CHAIN DRIVES 84
3.6 MACHINE TOOLS 87

SUMMARY 94

SELF-STUDY AND REVIEW 94

4 FORCES IN STRUCTURES AND FLUIDS 96

4.1 OVERVIEW 96
4.2 FORCES AND RESULTANTS 98
4.3 MOMENT OF A FORCE 105

REFERENCES 60
CONTENTS

4.4 EQUILIBRIUM OF FORCES AND MOMENTS 111
4.5 BUOYANCY, DRAG, AND LIFT FORCES IN FLUIDS 118

SUMMARY 136
SELF-STUDY AND REVIEW 137
PROBLEMS 138

5 MATERIALS AND STRESSES 148

5.1 OVERVIEW 148
5.2 TENSION AND COMPRESSION 149
5.3 RESPONSE OF ENGINEERING MATERIALS 153
5.4 SHEAR 166
5.5 FACTOR OF SAFETY 170

SUMMARY 171
SELF-STUDY AND REVIEW 173
PROBLEMS 173

6 THERMAL AND ENERGY SYSTEMS 180

6.1 OVERVIEW 180
6.2 MECHANICAL ENERGY, WORK, AND POWER 181
6.3 HEAT AS ENERGY IN TRANSIT 186
6.4 ENERGY CONSERVATION AND CONVERSION 194
6.5 HEAT ENGINES AND EFFICIENCY 204
6.6 CASE STUDY #1: INTERNAL COMBUSTION ENGINES 209
8.5 CASE STUDY IN MACHINE DESIGN:
THE HYDRA-MATIC TRANSMISSION 284

8.6 PATENTS IN ENGINEERING 291
SUMMARY 294
SELF-STUDY AND REVIEW 294
PROBLEMS 295
REFERENCES 296

APPENDIX A GREEK ALPHABET 297

APPENDIX B REVIEW OF MATHEMATICAL
EQUATIONS 299

APPENDIX C PLANETARY GEARTRAINS 303

INDEX 307