Contents

Preface xv

1 Gases and the Zeroth Law of Thermodynamics 1
 1.1 Synopsis 1
 1.2 System, Surroundings, and State 2
 1.3 The Zeroth Law of Thermodynamics 3
 1.4 Equations of State 5
 1.5 Partial Derivatives and Gas Laws 8
 1.6 Nonideal Gases 10
 1.7 More on Derivatives 18
 1.8 A Few Partial Derivatives Defined 20
 1.9 Summary 21
Exercises 22

2 The First Law of Thermodynamics 24
 2.1 Synopsis 24
 2.2 Work and Heat 24
 2.3 Internal Energy and the First Law of Thermodynamics 32
 2.4 State Functions 33
 2.5 Enthalpy 36
 2.6 Changes in State Functions 38
 2.7 Joule-Thomson Coefficients 42
 2.8 More on Heat Capacities 46
 2.9 Phase Changes 50
 2.10 Chemical Changes 53
 2.11 Changing Temperatures 58
 2.12 Biochemical Reactions 60
 2.13 Summary 62
Exercises 63
3 The Second and Third Laws of Thermodynamics 66
 3.1 Synopsis 66
 3.2 Limits of the First Law 66
 3.3 The Carnot Cycle and Efficiency 68
 3.4 Entropy and the Second Law of Thermodynamics 72
 3.5 More on Entropy 75
 3.6 Order and the Third Law of Thermodynamics 79
 3.7 Entropies of Chemical Reactions 81
 3.8 Summary 85
Exercises 86

4 Free Energy and Chemical Potential 89
 4.1 Synopsis 89
 4.2 Spontaneity Conditions 89
 4.3 The Gibbs Free Energy and the Helmholtz Energy 92
 4.4 Natural Variable Equations and Partial Derivatives 96
 4.5 The Maxwell Relationships 99
 4.6 Using Maxwell Relationships 103
 4.7 Focusing on ΔG 105
 4.8 The Chemical Potential and Other Partial Molar Quantities 108
 4.9 Fugacity 110
 4.10 Summary 114
Exercises 115

5 Introduction to Chemical Equilibrium 118
 5.1 Synopsis 118
 5.2 Equilibrium 119
 5.3 Chemical Equilibrium 121
 5.4 Solutions and Condensed Phases 129
 5.5 Changes in Equilibrium Constants 132
 5.6 Amino Acid Equilibria 135
 5.7 Summary 136
Exercises 138

6 Equilibria in Single-Component Systems 141
 6.1 Synopsis 141
 6.2 A Single-Component System 145
 6.3 Phase Transitions 145
 6.4 The Clapeyron Equation 148
 6.5 The Clausius-Clapeyron Equation 152
 6.6 Phase Diagrams and the Phase Rule 154
 6.7 Natural Variables and Chemical Potential 159
 6.8 Summary 162
Exercises 163
7 Equilibria in Multiple-Component Systems 166
7.1 Synopsis 166
7.2 The Gibbs Phase Rule 167
7.3 Two Components: Liquid/Liquid Systems 169
7.4 Nonideal Two-Component Liquid Solutions 179
7.5 Liquid/Gas Systems and Henry’s Law 183
7.6 Liquid/Solid Solutions 185
7.7 Solid/Solid Solutions 188
7.8 Colligative Properties 193
7.9 Summary 201
Exercises 203

8 Electrochemistry and Ionic Solutions 206
8.1 Synopsis 206
8.2 Charges 207
8.3 Energy and Work 210
8.4 Standard Potentials 215
8.5 Nonstandard Potentials and Equilibrium Constants 218
8.6 Ions in Solution 225
8.7 Debye-Hückel Theory of Ionic Solutions 230
8.8 Ionic Transport and Conductance 234
8.9 Summary 237
Exercises 238

9 Pre-Quantum Mechanics 241
9.1 Synopsis 241
9.2 Laws of Motion 242
9.3 Unexplainable Phenomena 248
9.4 Atomic Spectra 248
9.5 Atomic Structure 251
9.6 The Photoelectric Effect 253
9.7 The Nature of Light 253
9.8 Quantum Theory 257
9.9 Bohr’s Theory of the Hydrogen Atom 262
9.10 The de Broglie Equation 267
9.11 Summary: The End of Classical Mechanics 269
Exercises 271

10 Introduction to Quantum Mechanics 273
10.1 Synopsis 273
10.2 The Wavefunction 274
10.3 Observables and Operators 276
10.4 The Uncertainty Principle 279
10.5 The Born Interpretation of the Wavefunction; Probabilities 281
13 Introduction to Symmetry in Quantum Mechanics 419
 13.1 Synopsis 419
 13.2 Symmetry Operations and Point Groups 419
 13.3 The Mathematical Basis of Groups 423
 13.4 Molecules and Symmetry 427
 13.5 Character Tables 430
 13.6 Wavefunctions and Symmetry 437
 13.7 The Great Orthogonality Theorem 438
 13.8 Using Symmetry in Integrals 441
 13.9 Symmetry-Adapted Linear Combinations 443
 13.10 Valence Bond Theory 446
 13.11 Hybrid Orbitals 450
 13.12 Summary 456
 Exercises 457

14 Rotational and Vibrational Spectroscopy 461
 14.1 Synopsis 461
 14.2 Selection Rules 462
 14.3 The Electromagnetic Spectrum 463
 14.4 Rotations in Molecules 466
 14.5 Selection Rules for Rotational Spectroscopy 471
 14.6 Rotational Spectroscopy 473
 14.7 Centrifugal Distortions 479
 14.8 Vibrations in Molecules 481
 14.9 The Normal Modes of Vibration 483
 14.10 Quantum-Mechanical Treatment of Vibrations 484
 14.11 Selection Rules for Vibrational Spectroscopy 487
 14.12 Vibrational Spectroscopy of Diatomic and Linear Molecules 491
 14.13 Symmetry Considerations for Vibrations 496
 14.14 Vibrational Spectroscopy of Nonlinear Molecules 498
 14.15 Nonallowed and Nonfundamental Vibrational Transitions 503
 14.16 Fingerprint Regions 504
 14.17 Rotational-Vibrational Spectroscopy 506
 14.18 Raman Spectroscopy 511
 14.19 Summary 514
 Exercises 515

15 Introduction to Electronic Spectroscopy and Structure 519
 15.1 Synopsis 519
 15.2 Selection Rules 520
 15.3 The Hydrogen Atom 520
 15.4 Angular Momenta: Orbital and Spin 522
 15.5 Multiple Electrons: Term Symbols and Russell-Saunders Coupling 526
15.6 Electronic Spectra of Diatomic Molecules 534
15.7 Vibrational Structure and the Franck-Condon Principle 539
15.8 Electronic Spectra of Polyatomic Molecules 541
15.9 Electronic Spectra of π Electron Systems: Hückel Approximations 543
15.10 Benzene and Aromaticity 546
15.11 Fluorescence and Phosphorescence 548
15.12 Lasers 550
15.13 Summary 556
Exercises 558

16 Introduction to Magnetic Spectroscopy 560
16.1 Synopsis 560
16.2 Magnetic Fields, Magnetic Dipoles, and Electric Charges 561
16.3 Zeeman Spectroscopy 564
16.4 Electron Spin Resonance 567
16.5 Nuclear Magnetic Resonance 571
16.6 Summary 582
Exercises 584

17 Statistical Thermodynamics: Introduction 586
17.1 Synopsis 586
17.2 Some Statistics Necessities 587
17.3 The Ensemble 590
17.4 The Most Probable Distribution: Maxwell-Boltzmann Distribution 593
17.5 Thermodynamic Properties from Statistical Thermodynamics 600
17.6 The Partition Function: Monatomic Gases 604
17.7 State Functions in Terms of Partition Functions 608
17.8 Summary 613
Exercises 614

18 More Statistical Thermodynamics 616
18.1 Synopsis 617
18.2 Separating q: Nuclear and Electronic Partition Functions 617
18.3 Molecules: Electronic Partition Functions 621
18.4 Molecules: Vibrations 623
18.5 Diatomic Molecules: Rotations 628
18.6 Polyatomic Molecules: Rotations 634
18.7 The Partition Function of a System 636
18.8 Thermodynamic Properties of Molecules from Q 637
18.9 Equilibria 640
18.10 Crystals 644
18.11 Summary 648
Exercises 649
19 The Kinetic Theory of Gases 651
19.1 Synopsis 651
19.2 Postulates and Pressure 652
19.3 Definitions and Distributions of Velocities of Gas Particles 656
19.4 Collisions of Gas Particles 666
19.5 Effusion and Diffusion 671
19.6 Summary 677
Exercises 678

20 Kinetics 680
20.1 Synopsis 680
20.2 Rates and Rate Laws 681
20.3 Characteristics of Specific Initial Rate Laws 685
20.4 Equilibrium for a Simple Reaction 694
20.5 Parallel and Consecutive Reactions 696
20.6 Temperature Dependence 702
20.7 Mechanisms and Elementary Processes 706
20.8 The Steady-State Approximation 710
20.9 Chain and Oscillating Reactions 714
20.10 Transition-State Theory 719
20.11 Summary 725
Exercises 726

21 The Solid State: Crystals 731
21.1 Synopsis 731
21.2 Types of Solids 732
21.3 Crystals and Unit Cells 733
21.4 Densities 738
21.5 Determination of Crystal Structures 740
21.6 Miller Indices 744
21.7 Rationalizing Unit Cells 752
21.8 Lattice Energies of Ionic Crystals 755
21.9 Crystal Defects and Semiconductors 759
21.10 Summary 760
Exercises 762

22 Surfaces 765
22.1 Synopsis 765
22.2 Liquids: Surface Tension 766
22.3 Interface Effects 771
22.4 Surface Films 777
22.5 Solid Surfaces 778
22.6 Coverage and Catalysis 783
CONTENTS

22.7 Summary 788
Exercises 790

Appendixes 792
1 Useful Integrals 792
2 Thermodynamic Properties of Various Substances 794
3 Character Tables 797
4 Infrared Correlation Tables 802
5 Nuclear Properties 805

Answers to Selected Exercises 806
Photo Credits 817
Index 819