Chapter 1 Concepts and Models in Organic Chemistry 1

1.1 Models of Atomic and Molecular Structure 1
Atoms and Molecules 1
Molecular Dimensions 5
Heats of Formation and Reaction 9
Bonding Models 17
Electronegativity and Bond Polarity 20

1.2 Bonding and Molecular Geometry 24
Complementary Theoretical Models of Bonding 24
Atomic Energy Levels and Bonding Concepts 28
The sp^3-Hybridization Model for Methane 29
Are There sp^3-Hybrid Orbitals in Methane? 32
Valence Shell Electron Pair Repulsion Theory 37
Variable Hybridization and Molecular Geometry 38

1.3 Complementary Descriptions of the Double Bond 45
The σ,π Description of Ethene 45
The Bent Bond Description of Ethene 47
Predictions of Physical Properties with the Two Models 48

Conclusion 53
Problems 54
Chapter 2 | Stereochemistry 58
2.1 Introduction 58
2.2 Stereoisomerism 61
Isomerism 61
Symmetric, Asymmetric, Dissymmetric, and Nondissymmetric Molecules 64
Designation of Molecular Configuration 75
Fischer Projections 80
Stereochemical Nomenclature 84
2.3 Manifestations of Stereoisomerism 94
Optical Activity 94
Configuration and Optical Activity 99
Other Physical Properties of Stereoisomers 101
Stereochemical Relationship of Substituents 103
Chirotopicity and Stereogenicity 107
Problems 111

Chapter 3 | Conformational Analysis and Molecular Mechanics 119
3.1 Molecular Conformation 119
3.2 Conformational Analysis 126
Introduction 126
Application of Conformational Analysis to Cycloalkanes 133
Conformational Analysis of Substituted Cyclohexanes 135
3.3 Molecular Mechanics 141
3.4 Molecular Strain and Limits to Molecular Stability 161
Problems 173

Chapter 4 | Applications of Molecular Orbital Theory and Valence Bond Theory 178
4.1 Introduction to Molecular Orbital Theory 178
Hückel Molecular Orbital Theory 178
Correlation of Physical Properties with Results of HMO Calculations 192
Other Parameters Generated through HMO Theory 196
Properties of Odd Alternant Hydrocarbons 200
The Circle Method 205
Contents

4.2 Aromaticity 206
Benzene 208
Aromaticity in Small Ring Systems 214
Larger Annulenes 219
Dewar Resonance Energy and Absolute Hardness 221

4.3 Quantitative Methods Using Valence Bond Theory 224

4.4 Additional Molecular Orbital Methods 233
Perturbational Molecular Orbital Theory 233
A Survey of Theoretical Calculations 235

Problems 241

Chapter 5
Reactive Intermediates 246

5.1 Potential Energy Surfaces, Reaction Coordinate Diagrams and Reactive Intermediates 246

5.2 Reactive Intermediates with Neutral, Electron Deficient Carbon Atoms 257
Radicals 257
Carbenes 275

5.3 Intermediates with Charged Carbon Atoms 283
Carbocations 283
Carbanions 302
Conclusion 311
Problems 312

Chapter 6
Methods of Studying Organic Reactions 316

6.1 Molecular Change and Reaction Mechanisms 316

6.2 Tools to Determine Reaction Mechanisms 317
Identification of Reaction Products 317
Determination of Intermediates 318
Crossover Experiments 323
Isotopic Labeling 325
Stereochemical Studies 328
Solvent Effects 329

6.3 Applications of Kinetics in Studying Reaction Mechanisms 332

6.4 Arrhenius Theory and Transition-State Theory 339
6.5 Kinetic Isotope Effects 349
 Primary Kinetic Isotope Effects 351
 Secondary Kinetic Isotope Effects 360
 Solvent Isotope Effects 365

6.6 Substituent Effects and Linear Free Energy Relationships 366
 Substituent Effects 366
 Linear Free Energy Relationships 371
 Problems 386

Chapter 7 | Acid-Base Catalyzed Reactions 394

7.1 Acidity and Basicity of Organic Compounds 394
 Acid-Base Measurements in Solution 394
 Acid-Base Reactions in the Gas Phase 403
 Acidity Functions 411

7.2 Acid and Base Catalysis of Chemical Reactions 416
 Specific Acid Catalysis 417
 General Acid Catalysis 417
 Brønsted Catalysis Law 420

7.3 Acid and Base Catalysis of Reactions of Carbonyl Compounds
 and Carboxylic Acid Derivatives 421
 Addition to the Carbonyl Group 421
 Enolization of Carbonyl Compounds 426
 Hydrolysis of Acetals 431
 Acid-Catalyzed Hydrolysis of Esters 434
 Alkaline Hydrolysis of Esters 438
 Other Acyl Substitution Reactions 445
 Problems 449

Chapter 8 | Substitution Reactions 453

8.1 Introduction 453

8.2 Nucleophilic Aliphatic Substitution 456
 Designation of Nucleophilic Aliphatic Substitution Reactions 456
 The S_{N1} Reaction 463
 The S_{N2} Reaction 489
 Aliphatic Substitution and Single Electron Transfer 506
8.3 Electrophilic Aromatic Substitution 513
The \(\text{S}_{\text{E}}\text{Ar} \) Reaction 513
Quantitative Measurement of \(\text{S}_{\text{E}}\text{Ar} \) Rates: Partial Rate Factors 517
Lewis Structure Bond Models of Reactivity in \(\text{S}_{\text{E}}\text{Ar} \) Reactions 518

8.4 Nucleophilic Aromatic and Vinylic Substitution 522
Nucleophilic Aromatic Substitution 522
Nucleophilic Vinylic Substitution 526
Nucleophilic Substitution Involving Benzyne Intermediates 530
Radical-Nucleophilic Substitution 538

Concluding Remarks 542
Problems 543

Chapter 9 Addition Reactions 548

9.1 Introduction 548

9.2 Addition of Halogens to Alkenes 550
Electrophilic Addition of Bromine to Alkenes 550
Addition of Other Halogens to Alkenes 576

9.3 Other Addition Reactions 588
Addition of Hydrogen Halides to Alkenes 588
Hydration of Alkenes 597
Oxymercuration 600
Hydroboration 606
Epoxidation 613
Electrophilic Addition to Alkynes and Cumulenes 615
Nucleophilic Addition to Alkenes and Alkynes 626
Nucleophilic Addition to Carbonyl Compounds 631

Problems 637

Chapter 10 Elimination Reactions 641

10.1 Introduction 641

10.2 Dehydrohalogenation and Related 1,2-Elimination Reactions 645
Potential Energy Surfaces for 1,2-Elimination 645
Competition between Substitution and Elimination 652
Stereochemistry of 1,2-Elimination Reactions 655
Regiochemistry of 1,2-Elimination Reactions 663
Chapter 11 | Concerted Reactions 710

11.1 Introduction 710

11.2 Electrocyclic Transformations 715
Definitions and Selection Rules 715
MO Correlation Diagrams 719
State Correlation Diagrams 724

11.3 Sigmatropic Reactions 729
Definitions and Examples 729
Selection Rules for Sigmatropic Reactions 731
Further Examples of Sigmatropic Reactions 741

11.4 Cycloaddition Reactions 746
Introduction 746
Ethene Dimerization 746
The Diels-Alder Reaction 751
Selection Rules for Cycloaddition Reactions 754

11.5 Other Concerted Reactions 762
Cheletropic Reactions 762
Atom Transfer Reactions 764
Ene Reactions 767

11.6 A Generalized Selection Rule for Pericyclic Reactions 768

11.7 Alternative Conceptual Models for Concerted Reactions 772
Frontier Molecular Orbital Theory 772
Hückel and Möbius Aromaticity of Transition Structures 778
Synchronous and Nonsynchronous Concerted Reactions 785

Problems 789
Chapter 12 | Photochemistry 795

12.1 Introduction 795
Energy and Electronic States 795
Designation of Spectroscopic Transitions 798
Photophysical Processes 801
Selection Rules for Radiative Transitions 804
Fluorescence and Phosphorescence 806
Energy Transfer and Electron Transfer 811
Fundamentals of Photochemical Kinetics 814

12.2 Properties of Excited States 822
Acidity and Basicity in Excited States 822
Bond Angles and Dipole Moments of Excited State Molecules 827

12.3 Representative Photochemical Reactions 830
Photochemical Reactions of Carbonyl Compounds 831
Photochemical Reactions of Alkenes and Dienes 839
Photochemical Reactions of α,β-Unsaturated Carbonyl Compounds 852
Photochemical Reactions of Aromatic Compounds 854
Photosubstitution Reactions 856
σ Bond Photodissociation Reactions 858
Singlet Oxygen and Organic Photochemistry 863

12.4 Some Applications of Organic Photochemistry 865

Problems 870

References for Selected Problems 877
Credits 884
Name Index 889
Subject Index 907